A Multimodes Monte Carlo Finite Element Method for Elliptic Partial Differential Equations with Random Coefficients
نویسندگان
چکیده
This paper develops and analyzes an efficient numerical method for solving elliptic partial differential equations, where the diffusion coefficients are random perturbations of deterministic diffusion coefficients. The method is based upon a multimodes representation of the solution as a power series of the perturbation parameter, and the Monte Carlo technique for sampling the probability space. One key feature of the proposed method is that the governing equations for all the expanded mode functions share the same deterministic diffusion coefficient; thus an efficient direct solver by repeatedly using the LU decomposition of the discretized common deterministic diffusion operator can be employed for solving the finite element discretized linear systems. It is shown that the computational complexity of the algorithm is comparable to that of solving a few deterministic elliptic partial differential equations using the director solver. Error estimates are derived for the method, and numerical experiments are provided to test the efficiency of the algorithm and validate the theoretical results.
منابع مشابه
Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods
We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modelling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very limited spatial regularity, and lead to var...
متن کاملMulti-level Higher Order Qmc Galerkin Discretization for Affine Parametric Operator Equations
We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [F.Y. Kuo, Ch. Schwab, and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for...
متن کاملA qMC-spectral method for elliptic PDEs with random coefficients on the unit sphere
We present a quasi-Monte Carlo spectral method for a class of elliptic partial differential equations (PDEs) with random coefficients defined on the unit sphere. The random coefficients are parametrised by the Karhunen-Loève expansion, while the exact solution is approximated by the spherical harmonics. The expectation of the solution is approximated by a quasi-Monte Carlo integration rule. A m...
متن کاملMulti-Level Monte Carlo Finite Element Method for Elliptic Partial Differential Equations with Stochastic Data
متن کامل
Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations
We describe and analyze two numerical methods for a linear elliptic problem with stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the computations is to approximate statistical moments of the solution, and, in particular, we give a priori error estimates for the computation of the expected value of the solution. The first method generates independent identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016